
Emulation of Malformed XML Using WSInject for
Security Testing Against WS-Security

Marcelo Palma Salas, Eliane Martins
Institute of Computing, State University of Campinas

Campinas, Brazil
Email: {marcelopalma,eliane}@ic.unicamp.br

Abstract— Web Services is a technology that provide more
connectivity, flexibility and interoperability among their
applications. Due to its distributed and open nature, it is
susceptible to Malformed XML attack, which inserts malicious
code in the SOAP message request. This attack causes errors in
the XPath parser in order to generate server failures (crash) that
expose confidential information as part of the response. One
countermeasure is to employ Security Testing, which allows the
detection of this type of vulnerability and helps to discover new
ones, before they are exploited by attackers. Our goal is to use
the WSInject fault injector, which emulates Malformed XML
attack for Security Testing against WS-Security with Security
Tokens, which ensures authentication and authorization of the
messages exchanged. The results were compared with a
Vulnerability Scanner, which reproduces this type of attack,
getting better results with WSInject.

Keywords - Malformed XML; fault injector; WSInject; Security
Testing; WS-Security; Web Services Security.

I. INTRODUCTION

Using the Web Service technology, an application can
invoke another one to make simple or complex tasks even if
the two applications are in different systems and written in
different languages, making their resources available to any
client that can operate them. However, new security challenges
are created, since they are open and distributed.

There are many studies [1-5] about the various attacks on
Web Services and their protocols such as SOAP and XML, like
injection attacks, for example, which were the most exploited
in 2010, according to the Open Web Application Security
Project (OWASP Top Ten). These attacks are composed by
XML Injection, SQL Injection, XPath Injection, Cross-site
Scripting (XSS), Malformed XML, among others. Injection
attacks occur when user-supplied data are sent to a parser as
part of a command or query. In this way, the parser is fooled by
the request and run malicious commands or manipulate data,
generating errors in the target system.

The protection against such attacks requires security
mechanisms applied to the SOAP message to ensure its
transportation. In April 2004, WS-Security specification was
published by OASIS, introducing a large number of new
specifications and technologies to protect the communication
of SOAP messages against several types of attacks such as
those mentioned above.

Our goal is to use a Fault Injector (FI) to test security in the
messages exchange among clients and Web Services, rather
than using other tools like Vulnerabilities Scanners (VS), in
order to obtain: (1) more coverage of attacks; and (2) lower
number of false positive. With respect to (1), the use of an
injector allows to emulate different types of attacks, varying
the parameters and data injected. In (2), we used a set of rules,
based on various sources.

The experiments are organized in two phases. In the pre-
analysis phase the Vulnerability Scanner (VS) soapUI is
applied to ten real Web Services, in order to obtain a data set,
being that five of them use WS-Security and five does not. This
information, based on results from other researches, helped us
to develop a set of rules to determine whether an attack was
successful. In the second phase, we applied the fault injector
WSInject in the same Web Services. This injector emulates
attacks and injects faults to the Web Services. In both phases
they were tested in the presence of Malformed XML, which is
ideal for analyzing the robustness of Web Services. These
attacks insert malformed XML fragments, leaving tags open,
adding attributes not defined, among others, causing possible
failures (crash) in Web Services [4].

The results of the pre-analysis phase using VS soapUI show
that 55.20% of the injected scripts are classified as successful
attacks. Applying a set of rules to the results of the VS, the
percentage drops to 16.49%, with a large number of false
positive and false negative. In the second phase, we use the IF
WSInject, obtaining 41.76% of successful attacks. However,
100% of Web Services presented vulnerabilities to this type of
attack. In both phases, the use of WS-Security reduced
significantly the number of vulnerabilities generated by
Malformed XML.

Finally, this paper is organized as follows: Section 2
introduces the concepts and technology of Web Services, in
addition to the security challenges. Section 3 presents the
proposed approach and experimental study, while describing
the rules to classify the attacks, and the obtained results.
Section 4 concludes this paper, showing the main contributions
and directions for future work.

II. SECURITY IN WEB SERVICES

The security violations in the systems occur due to the
exploitation of existing vulnerabilities, which are faults
introduced intentional or accidentally, during system

development. There are numerous causes of vulnerabilities,
among which we mention the complexity of the systems, as
well as the absence of a mechanism for verification of entries
received. An attack exploits vulnerabilities, maliciously or not,
and can compromise the security properties. The result of a
successful attack is an intrusion into the system [6].

A. WS-Security and Their Specifications

Security in Web Services can be treated as point-to-point or
end-to-end [7]. Different standards were proposed for each
context. Point-to-point aims at ensuring the security during the
transport of data. In this sense, there are several standards such
as HTTPS, an extension of HTTP. The point-to-point security
ensures the confidentiality of the data transported, but in the
case where messages pass through intermediate terminals,
before reaching the final destination, the security of the
messages is not guaranteed.

End-to-end security aims at protecting the exchange of
SOAP messages among clients and servers, encrypting the
information from source to destination, even with the existence
of intermediates. Among the proposed specifications, XML
Signature can be mentioned [8], which defines rules for
generating and validating digital signatures expressed in XML.
XML Encryption [9] specifies the process of data encryption
and its representation in XML, while Security Token [10]
proves the identity of the client, so they can have access to
services, using security credentials. There is also a OASIS
specification, the WS-Security (WSS) [11], which defines a set
of extensions to SOAP specifications and uses XML-Signature,
XML-Encryption and Security Token to provide: (1) integrity,
using digital signatures for all or part of the messages; (2)
confidentiality, allowing SOAP messages to be encrypted
partial or totally; (3) authenticity and authorization using
security credentials in the SOAP messages.

Beyond security of messages, there is other gamma of
applications based on Web Services, such as resource
protection and security policies. Since our interest is in the WS-
Security, we will not address these issues.

B. Security Testing

The Security Testing [6], allows to evaluate vulnerabilities
in applications and services of different types of security
attacks, e.g. Malformed XML, and discover new vulnerabilities
before they are exploited by attackers. For this purpose there
have been developed a variety of techniques, tools and
languages classified into static and dynamic techniques.

Static techniques analyze and inspect the code. They are
anticipated detection techniques, which carry many benefits
such as reduced cost and time. There is no need to execute the
services to apply this technique, differently from the dynamic
ones. In the dynamic technique we have Penetration Testing,
Fuzz Testing and Fault Injection.

Fault Injection consists of introducing, either by hardware
or software, fault or errors in a system and observe its behavior
[12]. There are several ways to inject faults. The most
attractive is by software, in which faults are introduced by an
injector, responsible for injecting faults in the system, before or

during execution. In this technique, the tests are composed of
two input sets, workload and faultload. The first represents the
entries that activate the server, while the second represents the
faults to be introduced.

There are numerous studies in the literature proposing the
use of this technique to test application security: In [13] a fault
injector is used to test security on firewalls and intrusion
detection systems, simulating attacks on TCP/IP. [14] uses this
technique to test a security protocol used in mobile
communication devices on the Internet. For security testing of
Web Services, there has also numerous works, among which
we mention [15] and [16], which use perturbations in the
SOAP messages to emulate attacks, similar to our proposal.
However, these studies use specific injectors for one type of
attack, while our injector is a general purpose one.
Furthermore, these works only apply to message corruption,
while in our case other types can be performed, for example,
delayed delivery of messages.

III. MALFORMED XML AGAINST WS-SECURITY

In this section we first show the architecture of tests used
and present, step-by-step, the execution of the experiments.

A. Test Architecture

The proposed approach uses fault injection as a technique
for security testing. For this purpose we used an injector,
developed in a previous work [17], called WSInject. This tool
acts as a proxy between the client and server, allowing to inject
communication faults for both service testing and composition
testing. The aim was to test services in isolation. In this case,
the injector intercepts the requests sent by the client through
SOAP messages, before being forwarded to the server, as
illustrated in Figure 1.

Figure 1. Test architecture used.

Since WSInject behaves as an HTTP proxy server, its
configuration is easy to perform. Interception and modification
of messages exchanged between the client and server is
transparent. Thus, the tool does not need the source code of the
service, or interfere with the execution platform, which makes
it possible to be used by both providers and users of the
service.

WSInject uses scripts to describe the faults to be injected,
which are text files containing one or more Fault Injection
Statements (commands). Each Fault Injection Statements
consists of a ConditionSet and a FaultList. The Fault Injection
Statements is a kind of condition-action command. By
intercepting a message and satisfy a set of conditions, the fault
list is injected. Figure 2 shows an example of executable script.
In bold we have the keywords that specify conditions and
actions. The first line contains a condition and two actions, in
which case, each time the URI make a call to the Web Service

and its response contains the string "Hotel", all occurrences of
"Name" are replaced by "Age" and a duplicated content is
generated. In the second line, every time a message contains
the string "caught exception" and is a response, the message
content is empty.

Figure 2. Samples script.

Once defined the architecture of tests, in order to perform
the attacks, the following steps are needed:

1. Preparation: in this step we define the attacks, the
faultload to be used, and select the Web Services
that will be tested.

2. Execution: This step aims at setting the workload
to generate SOAP message traffic, close to the
reality. Furthermore, the generated data will be
analyzed.

3. Analysis of results: analyzes data collected in the
previous step and determines the existence of
vulnerabilities.

B. Preparation

Although it was possible to emulate various types of attacks
with the IF WSInject, this paper presents the tests using the
Malformed XML attack, which causes the Web Service to
expose its confidential information and generate fault in the
target system (crash) [2]. This vulnerability occurs when a Web
application does not validate the information received from
external entities and processes the SOAP message, generating
fault on the server. For example, in Figure 3, the client sends a
form to be processed by the Web Service.

XML message request
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

<body>
 <form>
 <first_name>Alice</first_name>
 <last_name>Kidman</last_name>
 <email>alice.kidman@email.com</email>
 <comment>write your comments here!</comment>
 <input type=“submit”>submit</input>
 ...
 </form>
</body>

Figure 3. Example of XML form with user information.

A Web application that does not validate the information,
allows the attacker to send the following comment:

<comment><xml>xml<joke></xml1234</comment></joke>

With this modification, the attacker inserts malformed
XML fragments, leaving elements without declaration and

open labels. The variations of the attack are extensive.
Moreover, an effective attack gives the attacker enough
information to perform other attacks, e.g. routes file, type of
database and programming languages used, among others.

To emulate this attack, the injector must intercept SOAP
messages, recognize the transactions described in WSDL, and
corrupt the values of the parameters. To set the values to be
used, we rely on information from the literature, as well as the
attacks produced by the add-on Security Testing VS soapUI.
Examples of the scripts generated are shown in Table I.

TABLE I. SAMPLE SCRIPTS USED TO EMULATE MALFORMED XML

WSInject scripts
isRequest():stringCorrupt("<ujc:filterdCalId>555</ujc:filterdCalId>","<u
jc:filterdCalId><xml>xml<joke></xml></joke>555</ujc:filterdCalId>");
isRequest(): stringCorrupt("<ujc:filterdCalId>555</ujc:filterdCalId>",
"<UJC:FILTERDcALiD>555&</UJC:FILTERDcALiD>");
isRequest(): stringCorrupt("<ujc:filterdCalId>555</ujc:filterdCalId>",
"<ujc:filterdCalId newAttribute=\"XXX\">555</ujc:filterdCalId>");
isRequest(): stringCorrupt("<ujc:filterdCalId>555</ujc:filterdCalId>",
"<ujc:filterdCalId xmlns:ujc=\"http://.../hello.jsp\">555:filterdCalId>");
isRequest(): stringCorrupt("555</ujc:filterdCalId>",
"</ujc:filterdCalId>ujc:filterdCalId>555</ujc:filterdCalId>");

In Table I, the script uses the condition isRequest () which
selects requests from a client to a server. In each request the
injector uses stringCorrupt to replace the occurrences of the
operation <ujc:filterdCalId> by the Malformed XML attack,
e.g. <ujc:filterdCalId><xml>xml<joke></xml></joke>555
</ujc:filterdCalId>, with the objective of generating faults in
Web Services.

The WS-Security provides protection against this type of
attack, using Security Tokens (security credentials) with
authentication of the client information (cf § II.A). The security
information is embedded within tags <wsse:Security>, where
each SOAP message can contain one or more tags. Given that a
SOAP message can pass through several intermediate Web
Services, WS-Security allows them to just read or modify parts
of the message that they are directed to. In Figure 4, the Web
service sender is informed that the client, properly
authenticated, sends the request, as shown in lines 5 and 6.

XML message with WS-Security and Security Tokens
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

<soapenv:Envelope xmlns:soapenv=".." xmlns:wsse="..">
 <soapenv:Header>
 <wsse:Security>
 <wsse:UsernameToken wsu:Id="...">
 <wsse:Username>Alice</wsse:Username>
 <Password Type="PasswordText">Senha</Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 ...
 </soapenv:Body>

</soapenv:Envelope>

Figure 4. Example of SOAP message with Security Token (security
credentials) to request a Web Service.

As part of the Preparation phase, were made experiments of
pre-analysis, which allowed: i) select a set of Web Services to
be tested; ii) determine the faultload to be injected and the
communication scheme, which included the identification of
entry points (operations and parameters) described in WSDL;
and iii) identify the behavior of the Web Service in presence of
faults that characterize a successful attack.

For this pre-analysis, we selected 10 Web Services from a
set of 22,272, obtained from the UBR (Universal Business
Registry) Seekda, only five of which use the WS-Security
standard. These services have properties required to reproduce
the attack, such as authentication operations and the use of
WS-Security.

C. Execution

An important aspect of testing Web services is the
generation of real network traffic - workload. It represents the
requests that activate the Web Service. To be as realistic as
possible during testing, it should generate traffic the closest as
possible to the actual flow of SOAP messages. To generate the
workload we used the add-on Load Testing of VS soapUI,
representing the client, shown in Figure 1. The generated traffic
consists of requests made to Web Services with purpose to
emulate a real client.

The Figure 5 illustrates the injections campaign for tested
Web Services. For each Web Service were developed 5
injection scripts, each one specifying the corruption of a
determined parameter value and its operation, as shown in
Table I. For each script, the workload sends 100 requests. In
total, 5000 attacks were carried out.

Figure 5. Campaign of injection attack of Malformed XML.

Given the large number of combinations of operation
values and parameters for all Web Services, it is unviable to
generate all the attacks needed to corrupt them. For this reason,
we chose to make only a subset of these. The pre-analysis
experiments have allowed us to determine the operations and
parameters that would be interesting to use as target, i.e. we
injected in those more likely to defect (fail), in order to
decrease the amount of false positive present in VS tools.

D. Analysis of Results

An important aspect of this step is to identify when a
vulnerability was effectively detected, i.e. when an attack was
successful, excluding potential false positives. We must
differentiate when an invalid result is obtained due to an
internal failure (unintentional) to the Web Service or if it is
consequence of a successful attack.

Given the approach proposed of black box to determine if
an attack was successful, we used, as sources of information,
the logs stored by the tools (VS soapUI and IF WSInject). The
logs contain requests made by the client and the responses sent
by the server. Figure 6 shows an example of the log produced
by WSInject, in which the differences are indicated in the
request (modified after the corruption of the parameter) and the
response sent by the service. In this case the attack was
successful, because the server returned code 500 Internal
Server Error. In addition, we included the status codes from
responses sent by the HTTP protocol, for example the error
code 200, which indicates that the server did not detect the
attack. These results were obtained by analyzing the log
produced by WSInject described in Figure 6 (script 1).

isRequest():stringCorrupt("555</ujc:filterdCalId>","</ujc:filterdCalId>ujc
:filterdCalId>555</ujc:filterdCalId>");

Request Response
1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

<soapenv:Envelope.....>

 <soapenv:Header/>

 <soapenv:Body>

<ujc:GetFilteredCalendarByID>

 <ujc:filterdCalId>

 </ujc:filterdCalId>

 ujc:filterdCalId>555

 </ujc:filterdCalId>

</ujc:GetFilteredCalendarByID>

 </soapenv:Body>

</soapenv:Envelope>

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

HTTP/1.1 500 Internal Server Error

X-AspNet-Version: 2.0.50727

<?xml version="1.0" encoding="..."?>

<soap:Envelope... xmlns:xsi="...">

 <soap:Body>

 <soap:Fault>

<faultcode>soap:Client</faultcode>

<faultstring >Server was unable to
read request. ---> There is an
error in XML document (5, 47)
</faultstring >

 <detail />

 </soap:Fault>

 </soap:Body>

 </soap:Envelope>

Figure 6. Example of log generated by WSInject.

From this information we analyzed the responses of Web
Services, applying a set of rules that allowed us to identify
when vulnerability was effectively detected by the security
testing and when an attack was properly rejected by the
security specification WS-Security. This step is critical to
reduce the number of false positives, i.e. avoid indicating
vulnerability when it does not exist. We used the list of HTTP
status codes described in Table II.

TABLE II. LIST OF HTTP STATUS CODES

HTTP
codes

Description

200 – OK
Standard response for successful HTTP requests.
Vulnerability confirmed because the system executed the
request without detecting the attack.

400 – Bad
Request

The request cannot be answered due to bad syntax. We
considered unsuccessful attack because the server
detected the attack.

500 –
Internal
Server
Error

The server failed to comply with an apparently valid
request or encountered an unexpected condition which
prevented it from answer the request made by the client.
Consider analyzing the response from the server using the
tag <soap:Fault> within the body of the message. This tag
provides error and status information of the SOAP
message containing the sub-elements:
• <faultcode>, the identification code of fault.
• <faultstring>, readable explanation of the fault.
• <faulttactor>, information on who/what caused the fault.

HTTP
codes

Description

• <details>, detailed information about the error.
Faultcode values can be classified into four types:
• VersionMismatch: The server has encountered an invalid
namespace in the SOAP message envelope.
• MustUnderstand: The fault of MustUnderstand indicates
the absence of a mandatory element in the SOAP message
header.
• Client: The message was structured incorrectly or
contains incorrect information.
• Server: The server has a problem, so that the message
cannot be processed.

In the pre-analysis phase, we generated the set of rules.
First, the services were run without fault injection in order to
evaluate the responses gotten. Then attacks were introduced
using a VS soapUI with Security Testing add-on.

Based on the results obtained in the pre-analysis and
interpretation of the HTTP status codes given in Table II, we
created a set of rules to evaluate the results, similar to [18],
obtaining a set of 13 rules, described in Table III.

TABLE III. RULES TO IDENTIFY SUCCESSFUL ATTACKS ON WEB
SERVICES

Description

1

If the response message received contains "HTTP 200 OK" status
and the system executed the request without detecting the attack,
then there is a successful attack.

2
If the response message received contains "HTTP 200 OK" status
and responded with a robust message, describing the existence of
an error in the request, then there is a detected attack.

3
If the response message received contains "HTTP 400 – Bad
Request" (e.g. Request format is invalid: Missing required soap:
Body element.), then there is a detected attack.

4

In the absence or presence of attacks, if the response received
contains message with code "HTTP 500 Internal Server Error",
then there is software failure, because the response was not caused
by the attack, but a software error.

5
If in the absence of attacks, the response received contains message
code "HTTP 500 Internal Server Error" and in the presence of
attack an "HTTP 200 OK", then there is a successful attack.

6
If in the absence of attacks, the response received contains message
code "HTTP 500 Internal Server Error" and in the presence of
attack the code "HTTP 400", then there is a detected attack.

7

If the response message contains code "HTTP 500 Internal Server
Error" and there was no dissemination of information and the
response describes the existence of error in the request, then there
is a detected attack.

8

If the response message contains code "HTTP 500 Internal Server
Error" and there was dissemination of information (e.g. software,
programming language, library functions, database), then there is a
successful attack.

9

If the response message contains code "HTTP 500 Internal Server
Error" and route directory (Path) from the server or detailed
information about the user's connection (session cookies,
cryptosystems techniques used like SSL) were disclosed, then there
is a successful attack.

10
If it is possible to redirect the user to other Web Services or access
unauthorized pages, then there are successful attacks.

11
If it is possible to execute part of codes (e.g. Java script) or system
calls on the server, then there are successful attacks.

12
If the server times out, it is considered server failure (crash) and
there is a successful attack.

13
If none of the above rules can be applied, then the result is
considered inconclusive, because there is no way to confirm the
existence of vulnerability.

The add-on Security Testing for VS soapUI analyzes the
presence of vulnerabilities on the type of attack Malformed
XML. The results are described in Table IV. Note that 38.71%
of the attacks were classified as false positives, compared to
16.49% of successful attacks. In the Figure 7, it was observed
that the use of WS-Security with Security Tokens increases the
detection of attacks in the services tested from 18.02% to
71.96% (false positive) and decreases the incidence of
vulnerabilities from 22.09% to 7.48% (successful attacks).

TABLE IV. RESULTS OF THE PRE-ANALYSIS PHASE

Malformed XML Attacks with VS soapUI

Web Services Total
Attacks

False
Positive

Detected
Attacks

False
Negative

Successful
Attacks

Without WSS 172 31 53 50 38
% attacks inj. 100% 18.02% 30.81% 29.07% 22.09%

With WSS 107 77 10 12 8

% attacks inj. 100% 71.96% 9.35% 11.21% 7.48%

Total Attacks 279 108 63 62 46

% attacks inj. 100% 38.71% 22.58% 22.22% 16.49%

Figure 7. Campaign with VS soapUI.

In the phase of fault injection, we use the IF WSInject to
emulate Malformed XML attacks. The results are summarized
in Table V. It is important to note that this tool was successful
to inject all the 5000 attacks. In Figure 8 we observed a
meaningful improvement in the detection of attacks by the use
of WS-Security, from 36.48% to 80.00%. This huge difference
occurs because of security credentials (Security Tokens), which
verify the authenticity of the client, among other parameters.
The 20.00% of successful attacks with WS-Security correspond
to two types of system vulnerabilities: (1) the service processes
the request, which returns the HTTP code 200 for the execution
of the message, and (2) the message provides information that
can be used for other attacks, describing syntax problems (code
500).

TABLE V. RESULTS OF THE INJECTION PHASE

Malformed XML Attacks with IF WSInject

Web Services Total Attacks Detected Attack Successful Attacks

Without WSS 2500 912 1588
% attacks inj. 100% 36.48% 63.52%

With WSS 2500 2000 500
% attacks inj. 100% 80.00% 20.00%

Total Attacks 5000 2912 2088
% attacks inj. 100% 58.24% 41.76%

Figure 8. Campaign with IF WSInject.

As can be seen, the use of IF WSInject increases the
number of successful attacks against the VS soapUI from
16.49% to 41.76%. With the use of WS-Security with Security
Tokens, the number of successful attacks was reduced for both
cases, with VS soapUI from 22.09% to 7.48%, and with IF
WSInject from 63.52% to 20.00%.

CONCLUSION AND FUTURE WORK

The use of WS-Security improves the detection of
Malformed XML, a type of injection attack, which causes fail
on the target system and allows it to find vulnerabilities that
could be exploited by other types of attacks. The results
emphasize the fragility of the systems based on Web Service
and the considerable importance of security mechanisms like
those described in this paper.

The use of WSInject as a tool to inject Malformed XML is
an advantage of the proposed approach, which can be used to
emulate various types of attacks, being able to generate
variants of them, which is usually limited in the tools
commonly used to test security such as the vulnerability
scanners.

This type of research is very important, both for the
development of protection techniques and the development of
security testing, because while the absence of fault by
definition is undemonstrable and not robust, the presence of a
system fault is demonstrable.

As future work, we intend to combine different types of
attacks to improve detection of new vulnerabilities, always
considering the service as a black box.

ACKNOWLEDGMENT

At first, we want to thank CNPq and the Institute of
Computing, at State University of Campinas (IC - Unicamp),
for funding and supporting this research. We also acknowledge
Gabriela Batista Leão, from the Laboratory of Computer

Networks (LRC), at the same institute, for her collaboration
throughout the current work.

REFERENCES
[1] J. Meiko, G. Nils, H. Ralph and L. Norbert, “SOA and Web Services:

New Technologies, New Standards - New Attacks,” Web Services,
2007. ECOWS '07. Fifth European Conference on , vol., no., pp.35-44,
26-28 Nov. 2007.

[2] A. Ghourabi, T. Abbes and A. Bouhoula, “Experimental analysis of
attacks against web services and countermeasures,” In Proceedings of
the 12th International Conference on Information Integration and Web-
based Applications & Services (iiWAS '10). ACM, New York, NY,
USA, 195-201, 2010.

[3] V. Patel, R. Mohandas and A.R. Pais, “Attacks on Web Services and
mitigation schemes,” Security and Cryptography (SECRYPT),
Proceedings of the 2010 International Conference on , vol., no., pp.1-6,
26-28 July 2010.

[4] Eviware. soapUI, the Web Services Testing tool – Security Testing Tool
–. Obtained in Aug/2011 at: http: //www.soapui.org/.

[5] M. Salas, and E. Martins, “Emulação de Ataques do Tipo XPath
Injection para Testes de Web Services usando Injeção de Falhas,”
Workshop de Testes e Tolerância a Falhas (WTF), (30/04/2012 a
30/04/2012), Ouro Preto, MG, Brasil.

[6] C. Cachin, and J. Camenisch, “Malicious and accidental-fault tolerance
in internet applications: Reference Model and Use Cases,” LAAS,
MAFTIA, 2000.

[7] IBM “Security in a Web Services world A proposed architecture and
roadmap,” Whitepaper, April 7, 2002, V1.0.

[8] D. Eastlake, et al , “XML signature syntax and processing,” 2nd Edition,
2008.

[9] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, E. Simon, “XML
encryption syntax and processing,” W3C Recommendation, 2002.

[10] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, P. Hallam-Baker,
“Web Services Security: UsernameToken profile 1.1,” OASIS, 2006.

[11] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, P. Hallam-Baker,
“Web Services Security: SOAP message security 1.1 (WS-Security
2004),” OASIS.

[12] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J-C. Fabre, J-C. Laprie, “Fault
injection for dependability validation: a methodology and some
applications,” 1990.

[13] P.C.H. Wanner, and R.F. Weber, “Fault injection tool for network
security evaluation,” Dependable Computing, 2003.

[14] A. Morais and E. Martins, “Injeção de ataques baseados em modelo para
teste de protocolos de segurança”. Instituto de Computação, UNICAMP,
2009.

[15] M. Vieira, N. Antunes, and H. Madeira, “Using Web Security Scanners
to Detect Vulnerabilities in Web Services,” Conf. on Dependable
Systems and Networks, 2009.

[16] C. V. Ana de Melo, P. Silveira, “Improving data perturbation testing
techniques for Web Services,” Inf. Sci. 181, 3, 600-619, 2011.

[17] A. W. Valenti, W. Y. Maja, and E. Martins, “WSInject: a fault injection
tool for Web Services”. Instituto de Computação, UNICAMP, 2010.

[18] N. Antunes, and M. Vieira, “Detecting SQL Injection Vulnerabilities in
Web Services,” Dependable Computing, 2009.LADC '09. Fourth Latin-
American Symposium 2009.

