Emulation of Malformed XML Using WSInject for
Security Testing Against WS-Security

Marcelo Palma Salas, Eliane Martins

Institute of Computing, State University of Campgna
Campinas, Brazil
Email: {marcelopalma,eliane}@ic.unicamp.br

Abstract— Web Services is a technology that provide more Our goal is to use a Fault Injector (FI) to testiusiy in the
connectivity, flexibility and interoperability among their messages exchange among clients and Web Servatbey r
applications. Due to its distributed and open natue, it is than using other tools like Vulnerabilities ScamnéyS), in
susceptible to Malformed XML attack, which inserts malicious order to obtain: (1) more coverage of attacks; éjdlower
code in the SOAP message request. This attack casisarors in number of false positive. With respect to (1), tise of an
the XPath parser in order to generate server failues (crash) that injector allows to emulate different types of akscvarying

expose confidential information as part of the respnse. One he parameters and data injected. In (2), we usss ef rules,
countermeasure is to employ Security Testing, whichllows the based on various sources

detection of this type of vulnerability and helps ¢ discover new
ones, before they are exploited by attackers. Ouragl is to use The experiments are organized in two phases. Irpthe
the WSinject fault injector, which emulates Malformed XML analysis phase the Vulnerability Scanner (VS) sdapJ
attack for Security Testing against WS-Security with Security applied to ten real Web Services, in order to obéadata set,
Tokens, which ensures authentication and authorizadin of the being that five of them use WS-Security and fivesinot. This
messages exchanged. The results were compared with a jnformation, based on results from other researdhelped us
Vulr]erablllty Scanner,. which reproduces this type 6 attack, to develop a set of rules to determine whether ttacka was
getting better results with WSInject. successful. In the second phase, we applied tHe ifgector
WSinject in the same Web Services. This injectoulatas
attacks and injects faults to the Web Serviceddih phases
they were tested in the presence of Malformed Xhthich is
ideal for analyzing the robustness of Web Serviddsese
.- INTRODUCTION attacks insert malformed XML fragments, leavingstampen,
Using the Web Service technology, an application caadding attributes not defined, among others, cgupssible
invoke another one to make simple or complex tasks if failures (crash) in Web Services [4].
the two applications are in different systems andtem in
different languages, making their resources aviailab any
client that can operate them. However, new secahgllenges
are created, since they are open and distributed.

Keywords - Malformed XML; fault injector; WSInject; Security
Testing; WS-Security; Web Services Security.

The results of the pre-analysis phase using VSUosimow
that 55.20% of the injected scripts are classifisdsuccessful
attacks. Applying a set of rules to the resultdhaf VS, the
percentage drops to 16.49%, with a large numbefalse

There are many studies [1-5] about the variouskdtan positive and false negative. In the second phaseyse the IF
Web Services and their protocols such as SOAP and, Xke ~ WSiInject, obtaining 41.76% of successful attackeweler,
injection attacks, for example, which were the mogtloited 100% of Web Services presented vulnerabilitieshis type of
in 2010, according to the Open Web Application Si&zu attack. In both phases, the use of WS-Security cediu
Project (OWASP Top Ten). These attacks are compbged significantly the number of vulnerabiliies genexdht by
XML Injection, SQL Injection, XPath Injection, Cresite Malformed XML.

Scripting (XSS), Malformed XML, among others. Irjea

attacks occur when user-supplied data are sentparser as
part of a command or query. In this way, the paisséoled by
the request and run malicious commands or mangpulata,
generating errors in the target system.

Finally, this paper is organized as follows: Settid
introduces the concepts and technology of Web &esyiin
addition to the security challenges. Section 3 gnes the
proposed approach and experimental study, whilerithésy
the rules to classify the attacks, and the obtairesiits.

The protection against such attacks requires ggcuriSection 4 concludes this paper, showing the maitribwtions
mechanisms applied to the SOAP message to enssire &nd directions for future work.
transportation. In April 2004, WS-Security spedfion was
published by OASIS, introducing a large number efwvn II. SECURITY INWEB SERVICES
specifications and technologies to protect the camoation
of SOAP messages against several types of attaghs &s
those mentioned above.

The security violations in the systems occur dueh®
exploitation of existing vulnerabilities, which aréults
introduced intentional or accidentally, during syst

development. There are numerous causes of vulfiGes)i
among which we mention the complexity of the systeas
well as the absence of a mechanism for verificatibentries
received. An attack exploits vulnerabilities, malicsly or not,
and can compromise the security properties. Theltre$ a
successful attack is an intrusion into the syst&m [

A. WS -Security and Their Specifications

Security in Web Services can be treated as poiptiot or
end-to-end [7]. Different standards were proposed dach
context. Point-to-point aims at ensuring the séguhiring the
transport of data. In this sense, there are segt@atards such
as HTTPS, an extension of HTTP. The point-to-ps#turity
ensures the confidentiality of the data transported in the
case where messages pass through intermediatendsmi
before reaching the final destination, the secunfy the
messages is not guaranteed.

End-to-end security aims at protecting the exchaofje
SOAP messages among clients and servers, encryfiting
information from source to destination, even with existence
of intermediates. Among the proposed specificatiofidL

during execution. In this technique, the testscmmposed of

two input setsworkload andfaultload. The first represents the
entries that activate the server, while the seagepdesents the
faults to be introduced.

There are numerous studies in the literature piogahe
use of this technique to test application secuhityf13] a fault
injector is used to test security on firewalls aimttusion
detection systems, simulating attacks on TCP/I#] {Ges this
technique to test a security protocol used in neobil
communication devices on the Internet. For secteisfing of
Web Services, there has also numerous works, amhich
we mention [15] and [16], which use perturbationsthe
SOAP messages to emulate attacks, similar to aypogal.
However, these studies use specific injectors for type of
attack, while our injector is a general purpose .one
Furthermore, these works only apply to messageuption,
while in our case other types can be performedgef@mple,
delayed delivery of messages.

Ill. MALFORMED XML AGAINST WS-SECURITY
In this section we first show the architecture edt$ used

Signature can be mentioned [8], which defines rules forang present, step-by-step, the execution of thererpnts.

generating and validating digital signatures exggdsn XML.

XML Encryption [9] specifies the process of data encryption A Test Architecture

and its representation in XML, whil&ecurity Token [10]
proves the identity of the client, so they can haceess to
services, using security credentials. There is a@as@ASIS
specification, theVS-Security (WSS) [11], which defines a set
of extensions to SOAP specifications and uses XNgn&ure,
XML-Encryption and Security Token to provide: (bjegrity,
using digital signatures for all or part of the s@ges; (2)

The proposed approach uses fault injection as tmigee
for security testing. For this purpose we used mactor,
developed in a previous work [17], called WSInjéittis tool
acts as a proxy between the client and serveryiaigpto inject
communication faults for both service testing anchposition
testing. The aim was to test services in isolatlarthis case,

confidentiality, allowing SOAP messages to be encrypteothe injector intercepts the requests sent by thentcthrough

partial or totally; (3)authenticity and authorization using
security credentials in the SOAP messages.

Beyond security of messages, there is other gamima o

applications based on Web Services, such as
protection and security policies. Since our inteief the WS-
Security, we will not address these issues.

B. Security Testing

The Security Testing [6], allows to evaluate vuaislities
in applications and services of different types sefcurity
attacks, e.g. Malformed XML, and discover new vudidities
before they are exploited by attackers. For thigppse there
have been developed a variety of techniques, teold
languages classified into static and dynamic teples.

Static techniques analyze and inspect the codey ahe
anticipated detection techniques, which carry maepefits
such as reduced cost and time. There is no neexetute the
services to apply this technique, differently froine dynamic
ones. In the dynamic technique we have Penetrdtasting,
Fuzz Testing and Fault Injection.

Fault Injection consists of introducing, either hgrdware
or software, fault or errors in a system and obesés/behavior
[12]. There are several ways to inject faults. Timest
attractive is by software, in which faults are autnced by an
injector, responsible for injecting faults in thestem, before or

re&sourc

SOAP messages, before being forwarded to the seager
illustrated in Figure 1.

‘ av
—» WSS |, — 5 WSS L[5
% e) Jeera M
S SOAP o SOAP wp

Client WSinject Server

Figure 1. Test architecture used.

Since WSInject behaves as an HTTP proxy server, its
configuration is easy to perform. Interception amadification
of messages exchanged between the client and sever
transparent. Thus, the tool does not need the s@mate of the
service, or interfere with the execution platforhich makes
it possible to be used by both providers and usérshe
service.

WSinject uses scripts to describe the faults tonpeeted,
which are text files containing one or mdrault Injection
Satements (commands). EachFault Injection Statements
consists of &onditionSet and aFaultList. TheFault Injection
Satements is a kind of condition-action command. By
intercepting a message and satisfy a set of conditithe fault
list is injected. Figure 2 shows an example of efeue script.
In bold we have the keywords that speciynditions and
actions. The first line contains a condition and two ac$ipin
which case, each time the URI make a call to thé Bfervice

and its response contains the string "Hotel", edlusrences of
"Name" are replaced by "Age" and a duplicated aunie

generated. In the second line, every time a messag®ins
the string "caught exception" and is a response,ntessage
content is empty.

FauitListt

urif"Hetel ", sstringCorrupt!"Name”, "dac"}, multiply" /", 2);
contains{ caught cxcoption” | && isResponse;): empty(l;

Faultinjectio
n$taterments

| 1
i
ConditionSzt

Figure 2. Samples script.

Once defined the architecture of tests, in ordgredorm
the attacks, the following steps are needed:

1. Preparation: in this step we define the attackes, th
faultload to be used, and select the Web Service

that will be tested.

2. Execution: This step aims at setting the workloag
to generate SOAP message traffic, close to th
reality. Furthermore, the generated data will be

analyzed.

open labels. The variations of the attack are aken
Moreover, an effective attack gives the attackepugh
information to perform other attacks, e.g. routds, type of
database and programming languages used, among.othe

To emulate this attack, the injector must intercBAP
messages, recognize the transactions describedsinl\Wand
corrupt the values of the parameters. To set thgesao be
used, we rely on information from the literature,veell as the
attacks produced by the add-on Security TestingsW&UI.
Examples of the scripts generated are shown ineTlabl

TABLE I. SAMPLE SCRIPTS USED TO EMULATEMALFORMED XML

WSInject scripts

isRequest():stringCorrupt("<ujc:filterdCalld>5554d/ilterdCalld>","<u
jc:filterdCalld><xml>xmi<joke></xml></joke>555</ujfilterdCalld>");

isRequest(): stringCorrupt("<ujc:filterdCalld>55%f¢:filterdCalld>",
"<UJC:FILTERDCcALID>555&</UJC:FILTERDCcALID>");

isRequest(): stringCorrupt("<ujc:filterdCalld>55bf¢:filterdCalld>",
5 "<ujc:filterdCalld newAttribute=\"XXX\">555</ujc:fiterdCalld>"),

isRequest(): stringCorrupt("<ujc:filterdCalld>55%fu:filterdCalld>",
"<ujc:filterdCalld xmIns:ujc=\"http://.../hello.j3j5>555:filterdCalld>");

isRequest(): stringCorrupt("555</ujc:filterdCalld>"

£ "</ujc:filterdCalld>ujc:filterd Calld>555</ujc:filted Calld>");

In Table I, the script uses the condition isReqesthich

3. Analysis of results: analyzes data collected in the’sglects requests.from a client to a server. In eagbest the
previous step and determines the existence dpiector uses stringCorrupt to replace the occueenof the

vulnerabilities.

B. Preparation

Although it was possible to emulate various typieattacks
with the IF WSiInject, this paper presents the tesisg the
Malformed XML attack, which causes the Web Senvice
expose its confidential information and generatdtfa the
target system (crash) [2]. This vulnerability occwhen a Web
application does not validate the information reedi from
external entities and processes the SOAP messagetaging
fault on the server. For example, in Figure 3,dlient sends a
form to be processed by the Web Service.

XML message request

1. <body>

2 <form>

3 <first_name>Alice</first_name>
4: <last_name>Kidman</last_name>
5: <email>alice.kidman@email.com</email>
6
7
8
9
1

<comment>write your comments herel</comment>
<input type="submit”>submit</input>

</form>
0: </body>

Figure 3. Example of XML form with user information.
A Web application that does not validate the infation,
allows the attacker to send the following comment:

<comment><xml>xml<joke></xml1234</comment></joke>

With this modification, the attacker inserts matfed
XML fragments, leaving elements without declaratiand

operation <ujc:filterdCalld> by the Malformed XMLttack,
e.g. <ujc:filterdCalld><xml>xml<joke></xml></joke>3
</ujc:filterdCalld>, with the objective of genenadi faults in
Web Services.

The WS-Security provides protection against thigetyf
attack, using Security Tokens (security credentialsth
authentication of the client information (cf § 1).AThe security
information is embedded within tags <wsse:Securityhere
each SOAP message can contain one or more tagm Giat a
SOAP message can pass through several intermédiate
Services, WS-Security allows them to just read odify parts
of the message that they are directed to. In Figuthe Web
service sender is informed that the client, properl
authenticated, sends the request, as shown inJiaed 6.

XML message with WS-Security and Security Tokens

1 <soapenv:Envelope xmiIns:soapenv=".." xmIns:wss&="..

2 <soapenv:Header>

3: <wsse:Security>

4. <wsse:UsernameToken wsu:ld="...">

5 <wsse:Username>Alice</wsse:Username>

6 <Password Type="PasswordText">Senha</Password>
7 </wsse:UsernameToken>

8: </wsse:Security>

9: </soapenv:Header>

10: <soapenv:Body>
11:

12: </soapenv:Body>
13: </soapenv:Envelope>

Figure 4. Example of SOAP message with Security Token (sicuri
credentials) to request a Web Service.

As part of the Preparation phase, were made expatinof
pre-analysis, which allowed: i) select a set of V@ahvices to
be tested; ii) determine thiaultload to be injected and the
communication scheme, which included the identiiica of
entry points (operations and parameters) desctitnéSDL;
and iii) identify the behavior of the Web Servicepresence of
faults that characterize a successful attack.

For this pre-analysis, we selected 10 Web Senfites a
set of 22,272, obtained from the UBR (Universal iBeiss
Registry) Seekda, only five of which use the WSuBé&g
standard. These services have properties requiregbtoduce
the attack, such as authentication operations haduse of
WS-Security.

C. Execution
An important aspect of testing Web services is t

Given the approach proposed of black box to deterifi
an attack was successful, we used, as sourcedoofmation,
the logs stored by the tools (VS soapUl and IF \j&sh). The
logs contain requests made by the client and tgoreses sent
by the server. Figure 6 shows an example of theptoguced
by WSinject, in which the differences are indicatedthe
request (modified after the corruption of the pagtar) and the
response sent by the service. In this case thekattas
successful, because the server returned code 5@@ndh
Server Error. In addition, we included the statodes from
responses sent by the HTTP protocol, for exampdeettnor
code 200, which indicates that the server did reteat the
attack. These results were obtained by analyzirg Ity
produced by WSiInject described in Figure 6 (sckjpt

isRequest():stringCorrupt("555</ujc:filterdCalld*<jujc:filterdCalld>ujc
filterdCalld>555</ujc:filterdCalld>");

he

generation of real network trafficworkload. It represents the

requests that activate the Web Service. To be alsstie as

possible during testing, it should generate traffie closest as
possible to the actual flow of SOAP messages. Teigde the
workload we used the add-ohoad Testing of VS soapUI,

representing the client, shown in Figure 1. Theegated traffic

consists of requests made to Web Services withggerfo

emulate a real client.

The Figure 5 illustrates the injections campaigntésted
Web Services. For each Web Service were developeg
injection scripts, each one specifying the corauptiof a
determined parameter value and its operation, asvrshn
Table I. For each script, the workload sends 1@ests. In
total, 5000 attacks were carried out.

Request Response

1: <soapenv:Envelope.....> 1: HTTP/1.1 500 Internal Server Error
2: <soapenv:Header/> 2. X-AspNet-Version: 2.0.50727
3: <soapenv:Body> 3: <?xml version="1.0" encoding="..."?>|
4: <ujc:GetFilteredCalendarByID> 4: <soap:Envelope... xmins:xsi="...">
5: <ujc:filterdCalld> 5: <soap:Body>
6: </ujc:filterdCalld> 6: <soap:Fault>
7 ujc:filterdCalld>555 7. <faultcode>soap:Client<faultcode>
8: </ujc:filterdCalld> 8: <faultstring >Server was unable to
95 </ujc:GetFilteredCalendarBylD> re??c?r :2(*;’8'? doft?rtn;?te(ge ij;)‘”
10: </soapenv:Body> <ffaultstring > '
11: </soapenv:Envelope> 9 <detail />

10: </soap:Fault>

11: </soap:Body>

12: </soap:Envelope>

| Web Services 1] Web Services 2|] Web Services 10
I I '

cript1 | Script2 |

Guest1 | Request2 |
I I

Figure 5. Campaign of injection attack of Malformed XML.

Figure 6. Example of log generated by WSinject.

From this information we analyzed the responseg¥eb
Services, applying a set of rules that allowed asdentify
when vulnerability was effectively detected by tbecurity
testing and when an attack was properly rejectedthsy
security specification WS-Security. This step istical to
reduce the number of false positives, i.e. avoidiceting
vulnerability when it does not exist. We used tkedf HTTP
status codes described in Table 1.

Given the large number of combinations of operation

values and parameters for all Web Services, itnigable to
generate all the attacks needed to corrupt themthi®reason,
we chose to make only a subset of these. The @igsis
experiments have allowed us to determine the dpesatnd
parameters that would be interesting to use a®targ. we
injected in those more likely to defect (fail), wrder to
decrease the amount of false positive present itogIS.

D. Analysisof Results

An important aspect of this step is to identify wha
vulnerability was effectively detected, i.e. whan attack was
successful, excluding potential false positives. Wwist
differentiate when an invalid result is obtainededio an
internal failure (unintentional) to the Web Servigeif it is
consequence of a successful attack.

TABLE Il LIST OFHTTP STATUS CODES
HTTP Description
codes
Standard response for successful HTTP requests
200 — OK | Vulnerability confirmed because the system exectied
request without detecting the attack.
The request cannot be answered due to bad sywiax
400 - Bad "
Request considered unsuccessful attack because the server
detected the attack.
The server failed to comply with an apparently dali
request or encountered an unexpected condition hwhic
prevented it from answer the request made by tleatcl
500 — | Consider analyzing the response from the servegubie
Internal tag <soap:Fault> within the body of the messagés Hy
Server provides error and status information of the SOAP
Error message containing the sub-elements:
« <faultcode>, the identification code of fault.
« <faultstring>, readable explanation of the fault.
» <faulttactor>, information on who/what caused finglt.

HTTP

codes Description

* <details>, detailed information about the error.
Faultcode values can be classified into four types:
« VersionMismatch: The server has encountered an inval
namespace in the SOAP message envelope.
* MustUnderstand: The fault of MustUnderstand indicates
the absence of a mandatory element in the SOAPages
header.

e Client: The message was structured incorrectly
contains incorrect information.

» Server: The server has a problem, so that the message
cannot be processed.

id

%]

or

In the pre-analysis phase, we generated the setles.
First, the services were run without fault injentim order to
evaluate the responses gotten. Then attacks weedilced
using a VS soapUl with Security Testing add-on.

Based on the results obtained in the pre-analysid a

interpretation of the HTTP status codes given ibl&dl, we
created a set of rules to evaluate the results)asino [18],
obtaining a set of 13 rules, described in Table IlI

TABLE 1. RULES TO IDENTIFY SUCCESSFUL ATTACKS ONVEB

SERVICES

Description

If the response message received contains "HTTPQ00status
1 | and the system executed the request without degetitie attack,
then there is a successful attack

If the response message received contains "HTTP(#00status
2 | and responded with a robust message, describingxiseence of
an error in the request, then there is a detedtadka

If the response message received contains "HTTP -4(Bad
3 | Request" (e.g. Request format is invalid: Missieguired soap;
Body element.), then there is a detected attack
In the absence or presence of attacks, if the nsspoeceived
contains message with code "HTTP 500 Internal $eBreor",
then there is software failyrbecause the response was not caysed
by the attack, but a software error.
If in the absence of attacks, the response rec@opthins message
5 | code "HTTP 500 Internal Server Error* and in thesgnce of
attack an "HTTP 200 OK", then there is a successfatk

If in the absence of attacks, the response rece@orthins message
6 | code "HTTP 500 Internal Server Error* and in thesgnce of
attack the code "HTTP 400", then there is a detiegtiack

If the response message contains code "HTTP 5@énkit Server
Error" and there was no dissemination of informmatand the

! response describes the existence of error in tneest, then there
is a detected attack
If the response message contains code "HTTP 5@énkit Server
8 Error" and there was dissemination of informatierg(software,

programming language, library functions, datababe there is g
successful attack

If the response message contains code "HTTP 5@énkit Server
Error" and route directory (Path) from the server detailed
9 | information about the user's connection (sessiorokies,
cryptosystems techniques used like SSL) were diedicthen there
is a_successful attack
If it is possible to redirect the user to other \\B#yvices or access
unauthorized pages, then there are successfuksattac
If it is possible to execute part of codes (e.gaJscript) or system
calls on the server, then there are successfukatta

If the server times out, it is considered servéurfa (crash) and
there is a successful attack

10

11

12

The add-on Security Testing for VS soapUl analythes
presence of vulnerabilities on the type of attacklfdtmed
XML. The results are described in Table 1V. NotattB8.71%
of the attacks were classified as false positicesppared to
16.49% of successful attacks. In the Figure 7,a$ whserved
that the use of WS-Security with Security Tokerséases the
detection of attacks in the services tested fromDZ2% to
71.96% (false positive) and decreases the incideote
vulnerabilities from 22.09% to 7.48% (successftaeks).

TABLE IV. RESULTS OF THE PREANALYSIS PHASE
Malformed XML Attacks with VS soapUl
Web Services Total False Detected False Successful
Attacks Positive Attacks Negative Attacks
Without WSS 172 31 53 50 38
% attacks inj.| 100% 18.02% 30.81% 29.07% 22.09%
With WSS 107 77 10 12 8
% attacks inj.| 100% 71.96% 9.35% 11.21% 7.48%
Total Attacks 279 108 63 62 46
% attacks inj.| 100% 38.71% 22.58% 22.22% 16.49%

Malformed XML Attacks with VS soapUI

71.96%
_—

80.00%

60.00%

40.00% = Without Wss

20.00% With WSS

0.00%

False Positives Detected Attack False Negative Successful Attacks

Figure 7. Campaign with VS soapUlI.

In the phase of fault injection, we use the IF W&ihto
emulate Malformed XML attacks. The results are samwed
in Table V. It is important to note that this tawhs successful
to inject all the 5000 attacks. In Figure 8 we obed a
meaningful improvement in the detection of attaloikghe use
of WS-Security, from 36.48% to 80.00%. This hugiéedénce
occurs because of security credentials (Securikems), which
verify the authenticity of the client, among othmrameters.
The 20.00% of successful attacks with WS-Secudtyaspond
to two types of system vulnerabilities: (1) theveer processes
the request, which returns the HTTP code 200 ferttecution
of the message, and (2) the message provides iafamthat
can be used for other attacks, describing syntalzl@ms (code
500).

TABLE V. RESULTS OF THE INJECTION PHASE
Malformed XML Attacks with IF WSInject

Web Services Total Attacks Detected Attack Successful Attacks
Without WSS 2500 912 1588
% attacks inj. 100% 36.48% 63.52%

With WSS 2500 2000 500
% attacks inj. 100% 80.00% 20.00%
Total Attacks 5000 2912 2088
% attacks inj. 100% 58.24% 41.76%

If none of the above rules can be applied, then rdmilt is
considered_inconclusiyebecause there is no way to confirm the
existence of vulnerability.

13

Malformed XML Attacks with IF WSInject

20.00%

P 80.00%
- A 3 o
80.00% // £3.02%
p
60.00% //’.Eb,dti%]
w0005 | - 20.00¢ = Without Wss [1]
005 7 ;
e . ’ With wss
d —
7 S
~ s
.

0.00%

Detecled Allack Successlul Allacks

(2]

Figure 8. Campaign with IF WSInject.

As can be seen, the use of IF WSInject increases tI”[3]
number of successful attacks against the VS sodpbsh
16.49% to 41.76%. With the use of WS-Security v@tcurity
Tokens, the number of successful attacks was rediacéoth
cases, with VS soapUIl from 22.09% to 7.48%, andh Wi
WSinject from 63.52% to 20.00%.

(4]

(3]
CONCLUSION AND FUTURE WORK

The use of WS-Security improves the detection of[
Malformed XML, a type of injection attack, whichuses fail
on the target system and allows it to find vulnéitéds that
could be exploited by other types of attacks. Theuits
emphasize the fragility of the systems based on Btvice
and the considerable importance of security meshasilike
those described in this paper.

(7]
(8]

The use of WSInject as a tool to inject MalformeldllIXis o)

an advantage of the proposed approach, which carsdx to

10
emulate various types of attacks, being able toegea 0]
variants of them, which is usually limited in theols |13
commonly used to test security such as the wvulilgyab
scanners.
. . . 12
This type of research is very important, both fbe t (2l
development of protection techniques and the dewedmt of
security testing, because while the absence oft fayl [13]
definition is undemonstrable and not robust, thespnce of a
system fault is demonstrable. [14]
As future work, we intend to combine different tgpef
attacks to improve detection of new vulnerabilitiedwvays [15]
considering the service as a black box.
(16]

ACKNOWLEDGMENT

At first, we want to thank CNPq and the Institute o [17]
Computing, at State University of Campinas (IC -damp),
for funding and supporting this research. We atdmawledge
Gabriela Batista Ledo, from the Laboratory of Cotepu

(18]

Networks (LRC), at the same institute, for her aodration
throughout the current work.

REFERENCES

J. Meiko, G. Nils, H. Ralph and L. Norbert, “SOAdalVeb Services:
New Technologies, New Standards - New Attacks,” \Barvices,
2007. ECOWS '07. Fifth European Conference on., wal., pp.35-44,
26-28 Nov. 2007.

A. Ghourabi, T. Abbes and A. Bouhoula, “Experimérdaalysis of
attacks against web services and countermeasure®toceedings of
the 12th International Conference on Informatiotedmation and Web-
based Applications & Services (iiWAS '10). ACM, NeYork, NY,
USA, 195-201, 2010.

V. Patel, R. Mohandas and A.R. Pais, “Attacks orbV&ervices and
mitigation schemes,” Security and Cryptography (BEET),
Proceedings of the 2010 International Conferenceai., no., pp.1-6,
26-28 July 2010.

Eviware. soapUl, the Web Services Testing tool eusiy Testing Tool
—. Obtained in Aug/2011 at: http: //www.soapui.org/

M. Salas, and E. Martins, “Emulacdo de Ataques doo TXPath
Injection para Testes de Web Services usando Injeigd Falhas,”
Workshop de Testes e Tolerancia a Falhas (WTF)/0482012 a
30/04/2012), Ouro Preto, MG, Brasil.

C. Cachin, and J. Camenisch, “Malicious and actadault tolerance
in internet applications: Reference Model and UseseS,” LAAS,
MAFTIA, 2000.

IBM “Security in a Web Services world A proposedtatecture and
roadmap,” Whitepaper, April 7, 2002, V1.0.

D. Eastlake, et al , “XML signature syntax and gssing,” 2nd Edition,
2008.

D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, Simon, “XML
encryption syntax and processing,” W3C Recommeodafi002.

K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, Plallam-Baker,
“Web Services Security: UsernameToken profile 1AASIS, 2006.

K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, Plallam-Baker,
“Web Services Security: SOAP message security W5-Security
2004),” OASIS.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J-C. Fabi-C. Laprie, “Fault
injection for dependability validation: a methodpo and some
applications,” 1990.

P.C.H. Wanner, and R.F. Weber, “Fault injection| tear network
security evaluation,” Dependable Computing, 2003.

A. Morais and E. Martins, “Injecéo de ataques bdssa@m modelo para
teste de protocolos de seguranca”. Instituto depoagédo, UNICAMP,
2009.

M. Vieira, N. Antunes, and H. Madeira, “Using Webc8rity Scanners
to Detect Vulnerabilities in Web Services,” Confn dependable
Systems and Networks, 2009.

C. V. Ana de Melo, P. Silveira, “Improving data fuebation testing
techniques for Web Services,” Inf. Sci. 181, 3,-609, 2011.

A. W. Valenti, W. Y. Maja, and E. Martins, “WSInjea fault injection
tool for Web Services”. Instituto de Computacéo,lIOAMP, 2010.

N. Antunes, and M. Vieira, “Detecting SQL Injectidulnerabilities in
Web Services,” Dependable Computing, 2009.LADC Rsurth Latin-
American Symposium 2009.

